Pure Core 3 Past Paper Questions Pack B: Mark Scheme

Taken from MAP2

June 2001

Q	Solution	Marks	Total	Comments
1(a)	$3e^{2x}\cos 3x + 2e^{2x}\sin 3x$	M1		Product rule
		A1A1	3	
(b)	$20x(2x^2+1)^4$	M1 A1	2	for $kx(2x^2+1)^4$
	Total		5	

7 (a)	y Graph ln x	B1		
	Graph $\frac{3}{x}$	B1	2	
(b)(i)	$ \begin{array}{l} f(3) > 0 \\ f(2) < 0 \end{array} \Rightarrow \text{ root in } 2 < x < 3 \end{array} $	M1A1	2	
(ii)	$f'(x) = \frac{1}{x} + \frac{3}{x^2}$	B1		
	Use of Newton-Raphson formula	M1A1 $$		
	$x_1 = 2.82$	A1	4	AWRT (3 s.f) is OK
	Total		8	

Q	Solution	Marks	Total	Comments
8 (a)	Area = $\int_0^{\pi} (x + \sin x) \mathrm{d}x$	M1		
	$= \left[\frac{x^2}{2} - \cos x\right]_0^{\pi}$	A1		
	$=\left[\frac{\pi^2}{2}+1\right]-(-1)$	M1		for correct use of limits
	$=\frac{\pi^2+4}{2}$ or similar	A1	4	
(b)(i)	$\int_0^{\pi} x \sin x \mathrm{d}x = -x \cos x + \int \cos x \mathrm{d}x$	M1A1		
	$= \left[-x\cos x + \sin x \right]_0^{\pi}$ $= \pi - 0$	A1√		
	$= \pi - 0$ $= \pi$	A1	4	AG
(ii)	$\int_{0}^{\pi} \sin^2 x dx$			
	J ₀ Double angle	M1		
	$=\frac{1}{2}\int 1-\cos 2x\mathrm{d}x$	A1		
	$=\frac{1}{2}\left[x-\frac{\sin 2x}{2}\right]_{0}^{\pi}$	A 1√		
	$=\frac{\pi}{2}$	A1	4	AG
(c)	$V = \pi \int_0^{\pi} (x + \sin x)^2 \mathrm{d}x$	M1		
	$= \pi \int_0^{\pi} \left(x^2 + 2x \sin x + \sin^2 x \right) dx$			
	$=\pi\left[\frac{x^{3}}{3}\right]_{0}^{\pi}+(2\pi\times\pi)+\left(\pi\times\frac{\pi}{2}\right)$	A1√		
	= 57.1	A1	3	AWRT (3 s.f)
	Total		15	

January 2002

Q	Solution	Marks	Total	Comments
3	$y' = \frac{\cos x + (2+x)\sin x}{\cos^2 x}$	M1A1		Product rule acceptable $\frac{\cos x - (2 + x)(-\sin x)}{\cos^2 x}$ M1A1If simplified incorrectlyM1A0
	x = 0, y' = 1 x = 0, y = 2	A1F B1		
	Tangent: $\frac{y-2}{x} = 1$ y = 2 + x Total	m1A1F	6	f.t. non-zero / non-infinite gradient m1 depends on first M1
	Total		6	

Solution Marks Total Comments Q 7 (a) $\frac{(2+x)+(2-x)}{4-x^2}$ M1 A = 4A1 2 **(b)** $V = \pi \int_0^1 \frac{\mathrm{d}x}{4 - x^2}$ Condone omission of limits here M1 $= \frac{\pi}{4} \int_0^1 \frac{1}{2-x} + \frac{1}{2+x} dx$ A1F f.t. (a) - their A $=\frac{\pi}{4} \left[-\ln|2 - x| + \ln|2 + x| \right]_{0}^{1}$ Award for log integrals, ignore constant A B1FB1F $=\frac{\pi}{4}\left[\ln\left|\frac{2+x}{2-x}\right|\right]_{0}^{1}$ Correct use of limits M1 $=\frac{\pi}{4}\left[-\ln 3 - \ln 1\right]$ A1 6 $=\frac{\pi}{4}\ln 3$ AG (c)(i) $\frac{\mathrm{d}x}{\mathrm{d}\theta} = 2\cos\theta$ B1 $\int \frac{2\cos\theta}{\sqrt{4-4\sin^2\theta}} (\mathrm{d}\theta)$ Subs: any form M1 ignore limits for M1/ignore omission of $d\theta$ $= \theta + c$ A1 $=\sin^{-1}\left(\frac{x}{2}\right)+c$ A1 4 (ii) Area = $\left[\sin^{-1}\left(\frac{x}{2}\right)\right]_{0}^{1}$ or equivalent with θ M1 $=\frac{\pi}{6} = \begin{array}{c} 0.524\\ 0.523\\ 0.52 \end{array}$ A1 2 Total 14

June 2002

Q	Solution	Marks	Total	Comments
4	$V = \pi \int_{1}^{2} \left(x - \frac{1}{x} \right)^{2} dx$	M1		for $\pi \int \left(x - \frac{1}{x}\right)^2 dx$ form
		Al		Condone omission of limits and dx Correct form and limits, incl. dx (limits may be seen or implied later)
	$=\pi \int_{1}^{2} x^{2} - 2 + \frac{1}{x^{2}} dx$	A1		for correct expansion
	$=\pi \left[\frac{x^{3}}{3} - 2x - \frac{1}{x}\right]_{1}^{2}$	B1√ M1		for integrating above for substitution and correct use of limits
	$=\frac{5\pi}{6}$	Al	(6)	CAO. Must be exact.
5(a)(i)	$Total$ $y = x \tan 3x$		(6)	
	$y' = 3x \sec^2 3x + \tan 3x$	M1A1A1	(3)	M1 for product rule. A1 each correct term
(11)	$y = \frac{\sin x}{x}$			
	$y' = \frac{x\cos x - \sin x}{x^2}$	MIAIAI	(3)	M1 for quotient rule-ignore subsequent working A1 numerator A1 fully correct
				Use of product rule: $x^{-1}\cos x - x^{-2}\sin x$ (or better) M1A1A1
(b)	$\int_{0}^{\frac{\pi}{8}} x \sin 2x \mathrm{d}x$			
	$=\frac{-x\cos 2x}{2} - \int \left(\frac{-\cos 2x}{2}\right) dx$	M1A1A1		M1 for good attempt at 'parts' A1 each correct term
	$= \left[\frac{-x\cos 2x}{2} + \frac{\sin 2x}{4}\right]_0^{\frac{\pi}{8}}$	A1√		Correctly integrating 2 nd term Condone omission of limits
	$= \text{use of } \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}$	Bl		or use of $\cos\frac{\pi}{4} = \frac{1}{\sqrt{2}}$
	= to solution (AG)	Al	(6)	
	Total		(12)	

January 2003

2	(a)	$I_1 = [\ln(2 + u)]_0^6$ = ln 8 - ln 2 = ln 4	M1 A1 A1F	3	ft if $n =$ integer
	(b)	$dx = 2udu$ $I_2 = \int_0^6 \frac{2u}{u(2+u)} du$	M1 B1 A1		Limits Integrand
		$= 2 I_1 = 2 \ln (u + 2)$ = ln 16	A1F A1F	5	Need $I_2 = kI_1, \ k \neq 1.$ ft if $m =$ integer
		Total		8	

5 (a	a)			Alternative
	Either $A\left(1,\frac{\pi}{2}\right)$ or $A\left(1,90^\circ\right)$	B1		x - coords ±1 B1
	$B\left(-1,-\frac{\pi}{2}\right) \text{ or } B\left(-1,-90^{\circ}\right)$	B1	2	$y - \text{coords} \pm \frac{\pi}{2} \text{ or } \pm 90^{\circ}$ B1
(1	b) Use of $x = 0.1, 0.3, 0.5, 0.7, 0.9$	M1		
	y-values: 0.1002	M1		\sin^{-1} (their <i>x</i> -values) radians
	0.3047	m1		$\sum y$ attempted (radians)
	0.5236			Accept AWRT these
	0.7754			
	1.1198			
	$I = 0.2 \times \text{Sum of } y$ -values	M1		$0.2 \times \sum$ their y – values (even if degrees used)
	= 0.565	A1	5	CAO
	Total		7	

June 2003

Q	Solution	Marks	Total	Comments
1	$\int e^{2x} dx = \frac{1}{2} e^{2x} (+c)$			
	- 2	M1		attempt at integration by parts
	$\int_{0}^{\frac{1}{2}} x e^{2x} dx = \left[\frac{x e^{2x}}{2}\right]_{0}^{\frac{1}{2}} - \int_{0}^{\frac{1}{2}} \frac{e^{2x}}{2} dx$	A1		for $\frac{1}{2}xe^{2x}$
				2
	$=\frac{1}{4}e - \left[\frac{e^{2x}}{4}\right]_{0}^{\frac{1}{2}}$	A1		for $\frac{1}{4}e^{2x}$
		m1		substitution of both limits attempted
	$= \frac{1}{4}e - \frac{1}{4}e + \frac{1}{4} = \frac{1}{4}$	Al	5	(CAO)
	Total		5	
5 (a)	$\frac{dy}{dx} = \frac{2\sin x - 2x\cos x}{\sin^2 x}$	M1		use of quotient rule
	$dx = \sin^2 x$	A1		for numerator correct
		A1	3	for denominator correct
(b)(i)	At P , $\frac{dy}{dx} = 2$	B1F		From substitution of $x = \frac{\pi}{2}$ in answer to
				part (a)
	$T_P: y - \pi = 2\left(x - \frac{\pi}{2}\right)$	M1		or use of $y = mx + c$ to show $c = 0$ when $m = 2$
	y = 2x	A1	3	CAO
		DIE		
(II)	Gradient of $N_P = -\frac{1}{2}$	B1F		
	$N_P: y - \pi = -\frac{1}{2} \left(x - \frac{\pi}{2} \right)$	M1		or use of $y = mx + c$ for their $m \neq 2$
	$y = -\frac{1}{2}x + \frac{5\pi}{4}$	A1F	3	$\begin{bmatrix} \text{allow } y = -\frac{1}{2}x + 3.927 \\ \text{or } 4y + 2x = 5\pi \end{bmatrix}$
				$\begin{bmatrix} \mathbf{or} 4y + 2x = 5\pi \end{bmatrix}$
	Total		9	

January 2004

	Q	Solution	Marks	Total	Comments
4	(a)	$y = \ln\left(x^2 + 9\right)$			
		let $u = x^2 + 9$ then $\frac{du}{dx} = 2x$			
		and $y = \ln u$ $\therefore \frac{dy}{du} = \frac{1}{u} = \frac{1}{x^2 + 9}$	M1		
		$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{x^2 + 9} \times 2x$	M1		Use of chain rule
		$=\frac{2x}{x^2+9}$	A1	3	CAO
	(b)	$\int_{0}^{3} \frac{x}{x^{2} + 9} dx = \left[\frac{1}{2}\ln(x^{2} + 9)\right]_{0}^{3}$	M1		
		$=\frac{1}{2}\ln 18 - \frac{1}{2}\ln 9$	A1		
		$=\frac{1}{2}\ln 2$	A1	3	AG
	(c)	$\int_{0}^{3} \frac{x+1}{x^{2}+9} dx = \int_{0}^{3} \frac{x}{x^{2}+9} dx + \int_{0}^{3} \frac{1}{x^{2}+9} dx$	M1		Attempted
		$= \frac{1}{2} \ln 2 + \frac{1}{3} \left[\tan^{-1} \left(\frac{x}{3} \right) \right]_{0}^{3}$	A1		
		$==\frac{1}{2}\ln 2 + \frac{1}{3}\left[\tan^{-1}(-1) - \tan^{-1}(0)\right]$	M1		Limits used in correct expression
		$= \frac{1}{2}\ln 2 + \frac{\pi}{12}$	A1	4	AG
		Total		10	

0	Solution	Marks	Total	Comments
	f(2) = -0.091	M1		
	Change of sign \Rightarrow			
	\therefore root in the interval $1 \le x \le 2$	A1	2	
(b)(i)	$f'(x) = \cos x - \frac{1}{2}$	B1	1	
	-			
(ii)	$x_{n+1} = x_n - \frac{f(x)}{f'(x_n)} = x_n - \frac{\sin x_n - \frac{1}{2}x_n}{\cos x_n - \frac{1}{2}}$	M1		N-R formula used
	$x_{n+1} = x_n - \frac{\Gamma(x)}{f'(x_n)} = x_n - \frac{2}{1-x_n}$	1411		N-K Iomuna used
	$1 (x_n) \qquad \cos x_n - \frac{1}{2}$			
	2			
	$r = 2$; $r = 2 - \frac{\sin 2 - 1}{2}$	m1		Radians used in correct formula
	$x_0 = 2$ \therefore $x_1 = 2 - \frac{\sin 2 - 1}{\cos 2 - \frac{1}{2}}$			
	2			
	$x_1 = 1.901 \approx 1.9$	A1	3	AG
(0)(1)	$\sin^2 x = \frac{1}{2}(1 - \cos 2x)$			
	2			
	$\therefore \qquad \int \sin^2 x dx = \frac{1}{2} \int (1 - \cos 2x) dx$	M1		
	$\dots \int \sin x dx = \frac{1}{2} \int (1 - \cos 2x) dx$			
	1 1			
	$=\frac{1}{2}x - \frac{1}{4}\sin 2x + c$	A1	2	AG
	2 7			
(ii)	$\begin{bmatrix} 1.9 \\ 1.9 \\ 1.9 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1.9 \\ 1 \end{bmatrix} \begin{bmatrix} 1.9 \\ 1 \end{bmatrix}$	D1	1	
	$\int_{0}^{1.9} \sin^2 x = \left[\frac{1}{2}x - \frac{1}{4}\sin 2x\right]_{0}^{1.9} = 1.10$	B1	1	
(d)	0	M1		
(u)	Volume of solid formed $= V_1 - V_2$	111		
	1.00			
	$V_1 = \pi \int_0^{1.90} \sin^2 x \mathrm{d}x$	M1		for V_1 (3.46507) allow 3.46 (1.10× π)
	$=\pi \times 1.10$			
	(=3.47)			
		M1		for V_2
	$V_2 = \frac{1}{3} \times \pi \times (0.95)^2 \times 1.90$ or $\pi \int_{0}^{19} \left(\frac{1}{2}x\right)^2 dx$			2
	(= 1.796)			
	(1.720)	A1		(1.66028) allow 1.66
	\therefore Volume of solid formed = 1.67			(1.66938) allow 1.66
	Volume = $1.7 (2sf)$	A1	5	
	Volume – 1.7 (2st) Total		14	

June 2004

Q	Solution	Marks	Total	Comments
3(a)	π			
	$\int_{0}^{\frac{\pi}{2}} x \cos x \mathrm{d}x$			
	0			
	$= x \sin x - \int \sin x \mathrm{d}x$	M1 M1		
	$= \left\{ x \sin x + \cos x \right\}_0^{\frac{\pi}{2}}$	A1		
	π	M1		Radians only
	$=\frac{\pi}{2}-1$	A1	5	0.570 to 0.571
	2			
(b)(i)	$t = x^2 + 4 \Longrightarrow dt = 2x dx$	M1		correct
	$t = x^{2} + 4 \Longrightarrow dt = 2x dx$ $\therefore \int \frac{2x dx}{\sqrt{x^{2} + 4}} = \int \frac{dt}{\sqrt{t}}$	A1	2	AG
	$\sqrt[3]{\sqrt{x^2+4}} \sqrt[3]{\sqrt{t}}$			
	2 8 1			
(ii)	$\int \frac{2x dx}{\sqrt{2}} = \int t^{-\frac{1}{2}} dt$			
	$\int_{0}^{0} \sqrt{x^{2} + 4} = 4$			
	$\int_{0}^{2} \frac{2x dx}{\sqrt{x^{2} + 4}} = \int_{4}^{8} t^{-\frac{1}{2}} dt$ $\left[2 \sqrt{t}\right] \operatorname{or} \left[2\sqrt{x^{2} + 4}\right]$	M1		Integration attempted
	$\begin{bmatrix} 2 \sqrt{t} \text{ Jor} \begin{bmatrix} 2\sqrt{x^2} + 4 \end{bmatrix}$	A1		correct
		M1		attempt at correct limits seen
	$= 2\sqrt{8} - 2\sqrt{4} \\= 2(2\sqrt{2}) - 4$			
	$= 2(2\sqrt{2})^{-4}$ = $4(\sqrt{2} - 1)$	A 1	4	AG (AWRT 1.7)
	$= 4(\sqrt{2} - 1)$ Total	A1	4	AU (AWKI 1.7)

Q	Solution	Marks	Total	Comments
4(a)(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^x \times 2\cos 2x + \mathrm{e}^x \times \sin 2x$	M1 A1A1	3	Use of product rule A1 for each part correct
(ii) (b)	$\frac{dy}{dx}\Big _{x=0} = 2$ $\therefore y = mx \Rightarrow \text{ equation of tangent at } (0, 0)$ is $y = 2x$ $\frac{dy}{dx}\Big _{x=\pi} = 2e^{\pi}$	M1 A1ft	2	
	dx _{x=π} \therefore gradient of normal at $x = \pi$ is $-\frac{1}{2e^{\pi}}$ when $x = \pi$, $y = 0$ \therefore equation of normal at $(\pi, 0)$ is given by $y = -\frac{1}{2e^{\pi}} (x - \pi)$	M1 B1 M1ft		Use of $m_1 \times m_2 = -1$ (-0.216) on their gradient of normal
	$\Rightarrow 2e^{\pi}y + x = \pi$	A1	4	AG (any correct form)
	Total		9	× * /

Solution Marks Total Comments Q 5(a) $f(x) = x^3 - 15$ f(2) = -7 < 0B1values f(3) = 12 > 02 change of sign E1 \therefore root in the interval [2,3] **(b)(i)** $x = \frac{2}{3}x + \frac{5}{x^2}$ $\left(\times 3x^2\right) \Longrightarrow 3x^3 = 2x^3 + 15$ M1 $x^3 - 15 = 0$ A12 AG (ii) $x_{n+1} = \frac{2}{3}x_n + \frac{5}{x_n^2}$ using $x_1 = 3$, M1 $x_2 = 2.555556$ A1 on their x_2 $x_3 = 2.469299$ A1√` $x_4 = 2.466216$ A1√` 4 2.466215932 (iii) y = xy B2 2 B1 for staircase B1 for convergence x_3 x_1 x_2 3√15 Β1 1 (iv) Total 11